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A direct method for the implicit particle simulation of electromagnetic 
phenomena in magnetized, multi-dimensional plasmas is developed. 
The method is second-order accurate for w dt < 1, with w a charac- 
teristic frequency and time step dt. Direct time integration of the 
implicit equations with simplified space differencing allows the consis- 
tent inclusion of finite particle size. Decentered time differencing of the 
Lorentz force permits the simulation of strongly magnetized plasmas in 
the limit of zero perpendicular temperature. A Fourier-space iterative 
technique for solving the implicit field corrector equation, based on the 
separation of plasma responses perpendicular and parallel to the 
magnetic field and longitudinal and transverse to the wavevector, is 
described. Wave propagation properties in a uniform plasma are in 
excellent agreement with theoretical expectations. Applications to 
collisionless tearing and coalescence instabilities further demonstrate 
the usefulness of the algorithm. 0 1992 Academic Press, Inc 

(mode frequency) o much smaller than the plasma 
frequency 0, or cyclotron frequency 52, for one or several 
species c((w G o,, Q,). 

In contrast to single or multiple fluid plasma simulation 
methods [l] which efficiently represent confined plasma 
phenomena on very long time scales by moment equations, 
the algorithm described here follows individual particle 
orbits and thus retains all low-frequency kinetic effects. 

I. INTRODUCTION 

The algorithm differs from conventional (explicit) par- 
ticle simulation methods [a], which are appropriate for 
short time scale phenomena. In contrast to these methods, 
for which the maximum allowable time step At is limited to 
multiples of w; ’ or Sz; ‘, a direct implicit treatment of the 
particle and field equations allows much larger time steps to 
be used. The implicit treatment removes the explicit stability 
condition without significantly affecting the low-frequency 
modes of the system. 

We describe an algorithm for the efficient simulation of The possibility of using implicit field computations for 
low frequency phenomena in a magnetically-confined, particle simulation was considered some time ago [3], and 
collisionless plasma. Examples of possible applications are, it was concluded that a direct inversion of the implicit 
kinetic modifications of MHD waves and instabilities, particle difference equations was impractical. Mason [4] 
collisionless tearing modes, and radio frequency (RF) showed that including only the cold fluid contribution in the 
plasma heating or current drive at low frequencies. These time-advanced plasma response was sufficient for stability. 
applications are distinguished by characteristic frequency An alternative to this moment-implicit method [4, 51 is the 
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direct implicit method [6-91. The moment method has 
been applied to two-dimensional electromagnetic plasma 
simulation [lo] and the direct method has been applied 
to two-dimensional electrostatic plasma simulation [ 111 
and, recently, to two-dimensional electromagnetic plasma 
simulation [ 123. 

The algorithm described here extends the earlier elec- 
trostatic formulation [ I 1 ] to the electromagnetic case. The 
improvements previously implemented are thus applicable 
to electromagnetic simulations. The method is second-order 
accurate for small o d t, with associated reduced damping 
of these low-frequency modes compared to first-order 
schemes. Direct time integration of the implicit equations 
with simplified spatial differencing allows the consistent 
inclusion of finite particle size, so that long-wavelength 
modes are accurately represented with relatively few par- 
ticles per cell. Decentered time differencing of the Lorentz 
force [ 111 permits the simulation of strongly magnetized 
plasmas (Q2, AZ $ 1). As it stands, the method is still only 
applicable in the limit of zero perpendicular temperatures. 
An iterative technique for solving the implicit field corrector 
equation is described. It [ 13, 141 separates the plasma 
response into parts parallel and perpendicular to the 
magnetic field, and separates the longitudinal and trans- 
verse parts of the response. Then an approximate inverse for 
each of these parts is obtained and the results are selectively 
combined to give a rapidly convergent method. These 
manipulations are done in Fourier space. 

The algorithm has been implemented in bounded as well 
as periodic configurations. Wave propagation properties in 
a uniform plasma have been thoroughly tested. Applica- 
tions of the algorithm to collisionless tearing and 
coalescence instabilities have also been carried out. 

This paper is organized as follows. In Section II, our 
direct implicit electromagnetic algorithm is described. The 
dispersion and fluctuation properties of the algorithm are 
demonstrated in Section III. Applications to collisionless 
tearing and coalescence are given in Section IV, while 
Section V is devoted to a summary and discussion of the 
algorithm and its results. 

II. DIRECT IMPLICIT ELECTROMAGNETIC 
ALGORITHM 

The collisionless interaction of a non-relativistic plasma 
of finite sized simulation particles is described by Newton’s 
equations of motion. Single particle forces are given by the 
Lorentz force due to the electromagnetic fields. The 
resulting finite sized particle equations (in MKS units) are 

sj = VI, (2.la) 

t;= A,(xj, t) + vi x l-&(x,, t), (2.lb) 

for a large number of simulation particles of each species 

z = e, i; j = 1, 2, . . . . No. The overdot in Eq. 
differentiation with respect to the time t. 

In Eq. (2.1), the electric acceleration is 

A,= 4 H*E, 
0 mz 

(2.1) represent5 

(2.2) 

where q,, m, are the single particle charge and mass for 
species c( and E is the electric field. It is assumed that 
4, = -4c. The convolution operator H*, appearing in 
Eq. (2.2) represents sampling of the field by the finite sized 
charge cloud of the simulation particle. Thus, 

(H * E)(x) = s dx’ h(x -x’) E(x’), (2.3) 

where h is an interpolation function satisfying 
f dx’ h(x -x’) = 1 and the integrals are over the whole 
domain. 

The cyclotron frequency (vector) Q, of Eq. (2.1) is given 
in a similar fashion as 

&= 2 H*B, 
0 

(2.4) 
m, 

where B is the magnetic induction. 
Field quantities evolve according to the Maxwell equa- 

tions with self-consistent sources given by the particles. The 
relevant equations are Faraday’s law, 

$= -VxE, (2.5) 

and Ampere’s law, 

aE 
-=c’(VxB-p,,J). at (2.6) 

In Eq. (2.6), c is the velocity of light and ,u~ the permeability 
of free space, and the current density J is determined from 
the particle data as 

J(x) = 1 qah(x -x,) vi. 
i 

(2.7) 

Equation (2.7) is consistent with charge conservation, 

ap z+V.J=O, (2.8) 

where the charge density p is given from the particle data, 

P(X) = c qczwx - Xj). 
i 

(2.9) 
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As is usual in particle simulations, the differential equa- with the normalized quantities, 
tions of this section are solved by introducing a spatial mesh 
and discretizing all quantities with respect to time. A set of jp = p, 
time marching difference equations is developed and used to 
advance the particle and field data. B C) -n-c l/2 = fin + 112 

A set of (time) explicit difference equations is obtained by cAt 2 
applying the usual leap-frog differencing to Eq. (2.1). It is i’2= - ) 

convenient to introduce normalized variables. Let A be the 
( > A 

spatial mesh spacing, assumed uniform and the same in all ?=AV, 

dimensions, for simplicity. Let At be the time step and 
denote time levels by a superscript. Then, the leap-frog 

3’+ 1/2(m) = + 1 f [i(m - 2:) 

difference equations for Eq. (2.1) may be written as +‘i(m-G;+l)] $iT+li2, 
,;+’ = 2; + ;,” + 112, (2.10a) 

y+ 112 = $;- l/2 + p(p) and 

+i[(l +ya)Q;+“2+(1 -y,)+;,““2] 

x fg(+y). (2.10b) 

In Eq. (2.10) the normalized quantities are given by 

Pi = x.,/A, (2.1 la) 

ij = vj AtJA, (2.1 lb) 

(2.1 lc) 

(2.11d) 

and y. is a centering parameter. In applications where 
si, 5 1, ya = 0 may be chosen and the full cyclotron motion 
of species ct is followed with the resulting time-centered 
equation. For fi, % 1, y, > 0 gives damping of the cyclotron 
motion. The resulting difference equations describe the 
zero-gyroradius, low-frequency motion of species c1 [ 111, 

The convolution operators of Eqs. (2.1 lc) and (2.1 Id) are 
approximated by an interpolation from the mesh in the 
usual way, 

(H * E)(ziA) = 1 i(% - m)(H * E)(mA). (2.12) 
m 

InEq.(2.12),m=(m1, m2) is a multi-integer labelling mesh 
points and i is an interpolation function which is local so 
that the sum contains but a few terms and is thus easily 
evaluated. 

Next, consider the differencing of the field equations. It is 
convenient to adopt a leap-frog scheme for the field quan- 
tities also. Thus, the difference approximation of Eqs. (2.5) 
and (2.6) may be written as 

fjn+I/2=p-1/2-9Xfp 3 (2.13a) 

E -n+I=~n+~2~xfjn+l/2 

-f,H2 * 3n+1/2, (2.13b) 

f" = !!$s (&)2. 
0 
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(2.14a) 

(2.14b) 

(2.14~) 

(2.14d) 

(2.14e) 

(2.14f) 

In Eq. (2.14e), the upper (lower) sign is chosen for elec- 
trons (ions). In Eq. (2.14f), N,, N,, are the number of cells 
in the x, y directions and No, as noted earlier, is the number 
of particles of either species. The normalized time step is 
given by dt = oeo At, where cue0 is the mean electron plasma 
frequency corresponding to the number density obtained 
from the total electron inventory and the total volume. 

Because of truncation errors, conservation of charge 
demanded by Eq. (2.8) will not be exact [ 151. To prevent 
the accumulation of these errors, the electric field ,!?‘+I 
appearing in Eq. (2.13b) is replaced by fir’+ i = e” + ’ + V$, 
where 

(2.15) 

with the normalized density 

b”(m) = 1 + i(m - 2,). (2.16) 

Note that the current is similarly defined. In this way, the 
finite difference form of Gauss’ law is exactly satisfied; that 
is. 

V.tn+1=fnH2qjn+1. (2.17) 

In the subsequent discussion, the carats written to 
indicate normalized quantities are suppressed. It is under- 
stood (unless stated otherwise) that all quantities are 
normalized as indicated previously. The explicit difference 
scheme consists of Eq. (2.10) for advancing the particles, 
Eq. (2.13) for advancing the fields, and Eqs. (2.14e), (2.15) 
and (2.16) for determining the source, J”+ ‘j2, for the field 

%l/lM)/l-6 
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and 

advance. Particle pushing requires the quantities A;, fi; 
and these are given by 

A: = E”, 

A;= -SE”, 
mi 

fi: = $(B” ~ 112 + B" + 9, 

(2.18a) 

(2.18b) 

(2.18~) 

gq= -megy 
mi ” 

(2.18d) 

This explicit scheme imposes several restrictions on the 
time step. Electron plasma oscillations require At < 1. Addi- 
tionally, electromagnetic (light) wave propagation requires 
kmaxc < 1, where k,,, is the largest allowed wavenumber. 
These conditions impose very severe limitations on the 
study of low-frequency electromagnetic phenomena, which 
require many thousands of such small time steps to develop. 
If the explicit equations are modified by including time- 
advanced fields in the particle acceleration (making the 
resulting equations implicit) these time step restrictions are 
avoided. 

The electromagnetic implicit method is an extension of 
earlier work on the electrostatic magnetized plasma [ 111. 
The electric field used to accelerate the particles is replaced 
by a time-filtered electric field which contains time- 
advanced information. This removes the constraint associated 
with the electron plasma oscillations. The Courant condi- 
tion associated with the propagation of light waves is also 
removed by introducing time-filtered information into the 
field advance equations. In contrast to Langdon [ 161, time- 
filtering is introduced into Ampere’s law rather than into 
Faraday’s law. This appears to be advantageous in the sense 
that there are no more terms arising in the plasma response 
from the variation of B” with the time-advanced electric 
field. However, changes in the magnetic field still affect the 
definition of the corrections to the time-advanced electric 
field. It is therefore less clear that placement of the time 
filtering into Ampere’s law is any more expedient. 

The implicit electromagnetic particle and field equations 
to be considered are 

x~+‘=x~+,~+“2, (2.19a) 

VI’+ ‘12 = vy- ‘12 + AZ(x,“) 

+~[(1+y~)v;+“~+(1-~y,)v,“~“2] 

x qx;), (2.19b) 

Jn+‘/2(m)=~~ k[i(m-x;)+i(m-x7+‘)] 
I 

x v; + ‘12, (2.19~) 

f+‘(m)=C +i(m-XT+‘), (2.19d) 

B” + l/2 = B” - l/2 _ V x E”, (2.19e) 

E ‘n+1=En+~2V~B”+“2-fnH2 *Jn+“2, (2.19f) 

E”+‘=E’“+’ - v, W%l 
V2+ = V . El”‘+ ’ - fHH2 * p”+ ‘, (2.19h) 

‘q = p, (2.19i) 

(2.19j) 

and 

(2.19k) 

(2.191) 

(2.19m) 

B” + 10 = $ [B” + J/2 + B” ~ l/2]. (2.19n) 

These implicit equations cannot be solved directly. Either 
additional information about higher moments needs to be 
introduced [4, lo] or a predictor-corrector method can be 
developed which directly expresses the plasma response to 
the time advanced electric field. The latter “direct” method 
[6, 11, 121 is chosen here. For this, the particles are pushed 
at least twice. First, a prediction is made by pushing the par- 
ticles using some guess for the unknown, time-advanced 
field. The error in satisfying the implicit field equation is 
computed. A field adjustment is computed in which the 
plasma response is estimated from the particle equations of 
motion. Then a correction to the particle data is made by 
again pushing the particles with the corrected electric field. 
While this iteration could be repeated with further field 
corrections, it has not been found necessary to use more 
than one corrector pass. 

Application of this method gives the following algorithm. 
First, approximate E”+ ’ by e = E”- ‘. Then all of 
Eqs. (2.19) except Eq. (2.19f) may be stepped forward in 
time. Denote the resulting quantities by writing them with a 
“tilde.” There will be some error in the remaining equation. 
Define the error E” by 

x(B”~1/2+B”+l/2-VxE”-1) 

- f,H2 * 3. (2.20) 

A correction to E’” + ’ is sought so that repushing the par- 
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titles with E’“+ ’ = e + 26E” (note that this definition gives The terms omitted from Eq. (2.24) are smaller than those 
E’” = I?“- I + 6E”) will reduce E” to zero. Retention of only written by the order of kv At, where k is the wave vector. 
the first-order (linear) terms in 6E” leads to the linear field Langdon [ 163 has included the next term in Eq. (2.24). In 
corrector equation the sequel, such terms are consistently neglected. Thus, the 

formulation given here is stable and accurate for kv At 5 1 

Y6E”=6E”++‘x6En 
as previously discussed for the electrostatic case [ 111. 

Proceeding as in Ref. [ 111 (and again neglecting terms of 
order kv At), the plasma response term in Eq. (2.23) may be 

(2.21) approximated by simplifying the expression given in 
Eq. (2.24). The resulting field corrector equation is 

where the last term on the left symbolically represents the 
plasma susceptibility. Equation (2.21) is solved for the Y6E”=6En+;VxVx6E” 

adjustment 6E” and all of Eqs. (2.19) (except (2.19f)) are 
advanced to the next time step. .fn 

The estimate of 6J and solution of the resulting field +?H2 * ‘i .~E”=E”, (2.25) 

corrector equation is taken up next. First, the expression of 
the plasma susceptibility indicated in Eq. (2.21) is made 
precise. Then a method for the iterative solution of the where the susceptibility y is given by 

resulting variable-coefficient, linear, elliptic, vector equation 
is developed. If 6 J =f(hE) were determined from a set of 
moment equations, we would have a moment method, as in 

a, (2.26) 

Ref. [lo]. 
The plasma susceptibility is expressed in terms of the 

perturbation of the particle orbits caused by a change in 
and fi, is the point particle number density of species LX, 

the time-filtered electric field, 6E”. From Eqs. (2.19a) and 
(2.19b), the change in the time-advanced particle data is 
given by 

E,(m)=4 1 [i(m-xy)+i(m-Gi)]. (2.27) 
jtz 

Gx,=Sv,[~ +$(l +Y,)R;(x;)x ‘i*] 

4vj=f?5E”(x;), 
e 2 

or 

(2.22) 

where the upper (lower) sign, as before, if for electrons 
(ions). The single particle susceptibility tensors of Eq. (2.22) 
are given by 

?:,=(l+ IV’:))’ [y -W,x 7 +W,W,], (2.23) 

with 

w, = ;( 1 + y,) n;(xy). 

Combination of Eqs. (2.22) and (2.19~) gives the suscep- 
tibility 

dJ(m)=ix [i(m-x,“)+i(m--?i,)] 7, 

. aEn + O(kv At). (2.24) 

As Langdon has pointed out [ 161, taking the divergence of 
Eq. (2.25) reproduces exactly the scalar field corrector of 
Ref:[ll]. - 

The field corrector given by Eq. (2.25) is a variable-coef- 
ficient, elliptic equation for 6E”. Global iterative methods 
have been used effectively for similar scalar equations pre- 
viously [ 111. The scalar field corrector for the electrostatic 
plasma was treated effectively by approximating the plasma 
response by that of a constant density plasma and then 
inverting this approximate inverse by Fourier transforms. A 
similar scheme was implemented for the vector corrector, 
Eq. (2.25). Convergence was found to be unreliable under 
rather moderate conditions. Two problems were observed. 
First, the assumption of constant density omits any infor- 
mation about density gradients which may be convected by 
6E”. If both species are strongly magnetized (Q, $ Qi % 1 ), 
a convective charge separation arises from the ion polariza- 
tion motion in a nonuniform plasma, even if charge 
neutrality holds. In the case when only the electron species 
is strongly magnetized (Q, >> 52,s l), this effect becomes 
even more pronounced. In that case, the electric drift of the 
electrons produces convection perpendicular to 6E”, and 
the unmagnetized motion of the ions, convection parallel to 
6E”. Neglect of these convective terms makes the con- 
vergence of an iteration based on a constant density 



82 KAMIMURA ET AL. 

approximation quite unreliable. An attempt was made to 
improve the approximate inverse by including the coupling 
of nearest neighboring harmonics in the direction of 
expected inhomogeneity. This leads to a cumbersome 
approximate inversion in which a complex, block- 
tridiagonal (with 3 x 3 blocks) system must be inverted. 
Convergence is improved but still unsatisfactory for such a 
scheme. A second difficulty observed suggests an improved 
iterative technique. The operator of Eq. (2.25) is very 
anisotropic in both m and k space. This anisotropy arises 
from the variation of the plasma response in the direction 
parallel and perpendicular to the magnetic field, B, and 
from the separation of the transverse and longitudinal 
responses of the vacuum described by Maxwell’s equations. 

The separation of these various responses may be used 
advantageously in developing an iterative method for inver- 
ting Eq. (2.25). First, note that the operator of Eq. (2.25) 
may be written as the sum of two operators, LY = L?, + P”, 
where 

.L??,=l+;VXV (2.28) 

and 

(2.29) 

For the geometry considered here, either of these operators 
may be inverted independently with little effort by the use of 
Fourier transforms. For more complicated geometries, a 
combination of Fourier transformation for periodic coor- 
dinates and finite differences for a non-periodic coordinate 
may be used [ 141. 

A strategy for iteration of the field corrector may now be 
developed. Because of the anisotropy mentioned earlier, one 
of the operators z will be strongly dominant on part of the 
solution. An approximate adjustment is given by inverting 
each of the g’s on that part of the error where L$ dominates 
and selecting the significant portion of the approximate 
solution obtained. 

If the magnitude of each operator is estimated parallel 
and perpendicular to B and longitudinal and transverse to 
k, this selection is easily accomplished. There are crossover 
regions where both operators are comparable. It is easy to 
see that in these regions, one half of the average of the two 
inverses will provide a good approximation to the solution. 

The estimates for the magnitudes of gi on the various 
part of the solution are now given. It is supposed that all 
vectors are divided into parts parallel and perpendicular to 
B and longitudinal and transverse to k. Thus, writing 9 for 
Fourier analysis (transformation from m to k space), the 
error E” is decomposed as 

(2.30b) 

(2.30~) 

and 

(2.30d) 

The solution 6E” is similarly decomposed. 
Only the diagonal parts of z are retained in the iteration. 

That is, after inverting L& on, say, ~7, L, only the 11, L portion 
of the solution is retained. Thus, an estimate is required for 
the eight projections LZ,,~, LZ.,,=, zLL, zL T. These are 
estimated as 

and 

9 fnh2D 
2(IT-- 2 ’ 

(2.31a) 

(2.31b) 

(2.31~) 

(2.31d) 

(2.3le) 

(2.3lf) 

(2.31g) 

(2.31h) 

where p, Ge are mean values for p and Sz,. Using these 
estimates for the eight projections, an approximate inverse 
to SY may be written as 

+w)+{~L)+{~~}, (2.32) 
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where the terms shown schematically are the same as the 
first with the appropriate subscripts substituted. 

This approximate inverse JZ%’ is then used to construct an 
iterative scheme for the solution of Eq. (2.25), 

‘+‘6E”-‘i?E=c!Z{e”-cY’6E”) (2.33) 

where 1 labels the iteration level. 

III. CODE TESTS 

In this section, test results obtained from a one-dimen- 
sional code based on the low-frequency electromagnetic 
algorithm of Section II are presented. The second-order 
accurate implicit scheme described there is used with area- 
weighting interpolation of the charge density and currents 
from, and of the forces to, the particles. The wave dis- 
persion and fluctuation properties of a uniform, thermal, 
magnetized, two-temperature plasma are examined. 

The test parameters are (system length) N, = 2564, 
(number of particles) No = 10,240, (particle size) a = 1.5A, 
where A is the grid spacing with Gaussian particle shape 
represented by h = exp( -k2a2/2), (ion-to-electron mass 
ratio) m;/m, = 100, (electron-to-ion temperature ratio) 
T,/Ti = 20. The constant magnetic field lies in the x-z plane 
at an angle 4 from the x-axis which is the wavevector direc- 
tion. It is of strength such that Q,/o, = 1.0. The speed of 
light c is set at c/o, A = 1 .O and the Alfvtn velocity scales as 
uA/c = Qi/oi = 0.1. Electrons and ions are initially loaded 
uniformly on the one-dimensional spatial grid with zero 
perpendicular thermal velocity. The time centering 
parameters are such that ye = yi = 0.1 and both electrons 
and ions are treated implicitly. 

Stability and accuracy dictate that kv At < 1 with u the 
maximum of the trapping velocity and the average fluid 
velocity, each closely related to the thermal velocity Us, and 
vT cos q5 At/A < 1. This suggests two ways to achieve large 
time steps; either decrease the thermal velocity, i.e., decrease 
u, or increase the grid spacing A with respect to the unit grid 
spacing 6 by a stretch factor A/S; i.e., decrease k. The latter 
is adopted here. 

The parallel electron and ion distribution functions are 
taken to be Maxwellian. The thermal velocity of the elec- 
trons is chosen such that uTe/w,A = 5 x 10P2, so that the 
electron Debye length is i,,JA = 5 x 10P2. The time-step 
can then be chosen as o, At = 10, 102, lo3 with grid spacing 
A = 6, 106, 1006. This represents a factor of lo2 to lo4 
increase over that allowed for an explicit code in which w, 
has to be resolved. The calculation comprises 8,192 time- 
steps so that many ion-acoustic and Alfven wave periods are 
resolved. Since the plasma is nearly uniform, the iterative 
solution of the implicit field equation requires only two 
iterations to converge to a relative error of lo-’ of the 

equivalent mean density. No iteration of the particle 
pushing beyond the first correction has ever been necessary. 

The collective behavior of the plasma at frequencies 
o 6 w, is displayed in Figs. l-4 for wave propagation 
parallel, oblique, and perpendicular to the magnetic field. 

For purely parallel propagation (4 = 0), the electrostatic 
and electromagnetic low frequency modes predicted by a 
theoretical analysis are the ion-acoustic waves, the whistler 
waves and the shear Alfven waves. For one set of 
parameters, the simulation plasma can only carry waves 

FIG. 1. One-dimensional code tests for propagation parallel to the 
magnetic held. Dispersion relation, w/w, vs. kl,, for (a) the electrostatic 
branch and (b) the electromagnetic one. Measured simulation frequencies 
are indicated by triangles for a stretch factor A/6= 10 and circles for 
A/6 = 1. The theoretical dispersion relations are drawn in as curves, the first 
from the bottom being the ion-acoustic branch, the second the shear Ahken 
one, and the third the whistler branch. The abscissas and ordinates are 
labeled in powers of 10. 
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within a range of wavelengths delimited by the system 
length and spatial grid size or particle size. Since we use two 
independent values of d or two sets of values of k, but with 
the same ratio AD/A = 0.05, all of the results from these two 
runs are combined into one figure over a range of three 
decades of k2,. The measured frequencies thus obtained are 
shown by triangles (d/6 = 10) and circles (A/6 - 1) in 
Figs. la and b. The frequency, o/w,, varies over a four 
decade range. No mode frequencies higher than the ones 
plotted were observed in the spectrum. Comparison with 
theoretical predictions is carried out as follows. The 
electromagnetic modes can be extracted from the cold 
plasma dispersion relation, 

tan*&= - 

n2 = k*c*Jco*, 

ER,L= 1 - h2Wz 
h2w2 

o(0.l f 52,) - o(o &2,)’ 

E = I- (co,’ + of) h2/02, 

(3.la) 

(3.lb) 

(3.lc) 

(3.ld) 

where h* is the particle shape factor. The ion-acoustic 
dispersion relation for w 4 Qi is obtained from [ 111 

with k,, = k cos 4. An approximate solution to Eq. (3.2) gives 
w/o, N (m&n,)“* k,,&,,[(l +3T,/T,)/(l +k212,,h-2)]“2. 
The dispersion relations W/O, versus kl, obtained from 
numerical solutions of these equations with 4 = 0 are shown 
as solid curves in Figs. la and b. Excellent agreement is clear 
with the low frequency branches, the first curve from the 
bottom being the ion-acoustic one, the second the shear 
Alfvtn or Alfven ion cyclotron one, and the third, the 
whistler branch. 

The time-averaged electrostatic energy per wave number 
(Ei,/87r) normalized to the thermal energy per degree of 
freedom kg TJ2 (with kg Boltzmann’s constant), or fluctua- 
tion spectrum, is shown in Fig. 2 for the same two runs with 
4 = 0. For T, S Ti and w < w,, Q,, the fluctuation spectrum 
of a two-temperature Maxwellian plasma can be written 
as [ll] 

<GJw k212 h2 ‘DC 

IcB 7-e/2 - 1 + k2r&h2’ 

FIG. 2. One-dimensional code tests for parallel propagation. Elec- 
trostatic fluctuation spectrum, (E~/8n)/(~~T,/2) vs. klo. Simulation 
values are indicated by triangles and circles. The upper curve depicts the 
theoretical spectrum in the presence of electron Landau damping, the 
lower curve without. 

The fluctuation spectrum predicted by Eq. (3.3) is plotted 
as the upper curve in Fig. 2. The fluctuation spectrum 
measured in the simulations indicated by triangles 
(A/6 = 10) and circles (A/6 = 1) follows closely the predic- 
tion of Eq. (3.3). The lower curve is the spectrum one would 
obtain with Boltzman electrons, i.e., in the absence of 
electron Landau damping [ 111. 

As the angle 4 between the wavenumber (or x-axis) and 
the magnetic field is increased from 0 to 90”, the whistler 
wave merges with the compressional Alfvtn wave. The shear 
Alfven wave frequency goes to zero in the limit of purely 
perpendicular propagation. For 0 < 4 < 90”, the three 
branches coexist. Results for propagation with 4 = 45” are 
displayed in Fig. 3. The simulation frequencies, measured in 
the three components of the electric field E, (Fig. 3a), E? 
(Fig. 3b), and Ez (Fig. 3c) are plotted as circles. Only one 
value for the grid spacing, A, A/6 = 1, is used so that the 
wavevector varies over two decades and the frequency over 
four. There is excellent agreement between simulation and 
the theoretical dispersion relations of Eqs. (3.1) and (3.2) 
represented by curves in Fig. 3, the first from the bottom 
being the ion-acoustic branch, the second the Alfven or 
Alfvtn ion cyclotron branch, and the third the whistler cum 
magnetosonic branch. 

For purely perpendicular propagation, only the compres- 
sional Alfven or magnetosonic wave is pedicted as a low 
frequency mode. The dispersion relation for perpendicular 
propagation (4 = 90’) is presented in Fig. 4. Three values of 
the stretch factor, A/6 = 1, 10, and 100, are used in the 
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FIG. 3. One-dimensional code tests for propagation oblique to the magnetique field with angle 4 = 45”. Dispersion relation, w/w, vs. kl,, measured 
in the three components of the electric field (a) E,, (b) EY, and (c) E,. The simulation frequencies are plotted as circles and theoretical predictions as 
curves, the first from the bottom representing the ion acoustic branch, the second the shear Alfven branch, and the third, the whistler cum magnetosonic 

simulations and the results from these three runs again are 
combined into one diagram. The wavevector varies over 
four decades, the frequencies represented by plusses 
(d/6 = 100) triangles (d/6 = lo), and circles (d/6 = 1). 
Agreement with the lower curve obtained from cold plasma 
theory including finite particle size effects (Eq. (3.1)) for the 
compressional AlfvCn wave is excellent. 

The following observations are suggested by the results 

-66 
-5 -4 -3 -2 -I 

kkD - 

FIG. 4. One-dimensional code tests for propagation perpendicular to 
the magnetic field. Dispersion relation o/o, vs kl,. Simulation frequencies 
are represented by plusses (stretch factor A/6 = lOO), triangles (A/6 = lo), 
circles (A/6 = 1), while the lower curve is the theoretical dispersion relation 
for the magnetosonic mode. 

shown in Figs. l-4. As the time step At is raised (as is 
possible here when A is increased or ur is lowered), the 
observable frequency range, mmin < o < omaX, shifts toward 
smaller w in accordance with IX,,, At < 1 and W,in = 
o,,,/NI, with N, the total number of time steps in a run. 
This is the natural frequency filtering intrinsic to the 
algorithm of Section II. Raising the time step At also has 
the consequence that the resolvable wave vector range 
km, < k < km, shifts toward smaller k. The maximum 
wavevector is set by k,,, u At < 1 and for waves such that 
w = kv,, (as is the case here with nph, the phase velocity of 
the wave), also by kmaxup,, At < 1, since mrnax ( =kmaxup,,) 
At < 1. The minimum resolvable wavenumber kmin is set 
either by the limit of the spatial resolution kmin = 2n/N, A or 
by the limit of the temporal resolution kmin = CO,,,~,/U~,, for 
waves such that o = ko,,, whichever is larger. Therefore 
increasing At within the constraints of stability and 
accuracy provides a natural zoom towards both the longer 
time scales and the larger space scales. We note that raising 
At by lowering U~ has the consequence that the wavevector 
k of the scope of the simulation becomes small with respect 
to k,, (=j.;:) = o,/vr, since k,, -+ co as vr -+ 0. Raising 
At by increasing A makes k = 2xmjN.,A small with respect 
to k,, simply because d is larger. In our implicit code, both 
making vT smaller or A larger, therefore focusing on ranges 
of smaller frequencies or longer wavelengths, are possible 
without causing numerical instability. Little flexibility exists 
to do so in explicit codes. 

The one-dimensional test results of this section clearly 
demonstrate the accuracy of the implicit method of Sec- 
tion II for studying low frequency phenomena in a thermal 
plasma. The dispersion relations and fluctuation spectra 
measured in the simulations agree very well with theoretical 
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expectations. The results of this section also show the 
implicit algorithm makes it possible to increase the 
simulated spatial scale with respect to the Debye length or 
collisionless skin depth and therefore it is possible to focus 
on phenomena of any range of frequency and wavelength. 

IV. APPLICATIONS 

Applications of an electromagnetic code, based on the 
direct implicit algorithm of Section II, to two instabilities of 
a magnetized two-and-one-half-dimensional plasma are 
now presented. The first is a simulation of the collisionless 
tearing instability for a plasma carrying a current along the 
magnetic field. It is set up so as to be directly comparable to 
a previous explicit simulation of the same instability by 
Katanuma and Kamimura [ 173. The second is a simulation 
of the closely related coalescence instability of two such 
current filaments. 

IV.1. Collisionless Teuring Instuhility 

The collisionless tearing simulation is carried out 
in a configuration with (system size) N, x NY = 64 x 32 
with A,/6 = 2, (number of electrons or ions) N, = 18,432, 
(mass ratio) mi/me = 16, (electron cyclotron frequency) 
Q, = lSw,, (speed of light) c/(T,/m,)“‘= 10, and (particle 
size) a = 1.5. The uniform external magnetic field Bz is 
normal to the plane of the simulation. A shear magnetic 
field B,(x) is produced by a sheet current along B,. The 
perturbed vector potential JZ obeys the equation [ 171 

where 

with the initial current profile being 

Jz(x) = -Jo= exp[ -(In 2)(x - L,/2)‘/ai], (4.2) 

with a, = 5.lA the initial width of the current channel and 
J,; = en,(T,/m,)‘/2. The electrons and ions are initially 
loaded with their guiding center velocities v, = 0 in such 
a way that the initial density of the particles with 
uniform parallel temperature balances the shear magnetic 
held pressure B:(x)/8n. The system is bounded in x by 
conducting walls and periodic in y. 

The explicit simulations of Katanuma and Kamimur; 
[ 173 used a full dynamics magnetoinductive particle mode 
and the time step AZ =O.lo,‘. The time step used in the 
present implicit simulation is At = 100; * or a two orde 
of magnitude increase over the explicit code. To optimize 
code performance in achieving such a large time step, L 
decentering parameter value of ye = yi = 0.1 is used in the 
implicit simulations. This means that both electrons ant 
ions are treated implicitly. 

The collisionless tearing simulation results are sum. 
marized in Figs. 5, 6, and 7. The plasma is initially per. 
turbed by a mode with the longest wavelength in y 
k,. = 2n/N,A.,, which is the only unstable mode according 
to the linear analysis [18]. Figures 5 and 6 show variom 
snapshots of magnetic flux and magnetic field B, doubled 
periodically in the y-direction for presentation. As can be 
seen from Figs. 5 and 6, the formation and growth of a 
magnetic island near the middle of the simulation domain 
evolves in a manner very similar to what has been observed 
in the explicit simulation of Katanuma and Kamimura 
[ 171. As in their work, the tearing instability goes through 
the linear growth stage [18], the nonlinear growth ox 
Rutherford stage [ 19, 201, and the nonlinear saturation 
stage. The time evolution of the magnetic island width W 
normalized to its maximum value of 2.1 a,, is shown in Fig. 7. 
In the nonlinear growth stage, the measured island width is 
approximately proportional to time, which is characteristic 
of the Rutherford phase [ 19, 201. The physical mechanism 
of saturation is provided by the flattening of the current. 

Analysis of the results is complicated by the fact that, 
in contrast to the usual theoretical assumption of a given 
constant A’, the simulations solve an initial value problem 
where the initial electron current and its initial profile are 
evolved. The linear growth rate of the tearing instability is 
expressed as [ 1 S] 

yL = kyu,A’/2n’/’ (%lc)2 L‘s> (4.3) 

where L, is the shear strength and 

(4.4) 

Here 2 stands for the singular layer width determined by the 
electron Doppler shift condition along the magnetic field 
lines k,, (x = Lx/2 + 2) x u, = yL and A therefore depends on 
A’. It is not easy to assign a value to A’ here, since the profile 
of the perturbed current channel (“singular layer”) is less 
abrupt in the simulations than is assumed in theory and is 
also strongly time dependent. Nevertheless, Eq. (4.3) with 
L, N 1704, A’ N a,‘, and k, N 0.1 yields yL N 3 x 10P3w,, 
while the measured growth rate is y - 10P3w,. The simula- 
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FIG. 5. Two-dimensional simulation of the collisionless tearing instability. Snapshots of magnetic flux contours at various times in the simulation. 

a 
32 
X 

FIG. 6. Two-dimensional simulation of the collisionless tearing instability. Snapshots of contours of the x component of the magnetic field B, at 
arious times in the simulation. 

64 64 
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The initial magnetic field configuration is chosen as [22] 

4 = Bo,. 
E sin ky 

coshkx+Ecosky’ 
(4.6a) 

B,. = B, 
sinh kx 

cash kx + E cos ky 
(4.6b) 

1 -E2 
1 

l/2 

B; = B;, 
(cash kx + E cos ky)2 

+ B;; (4.6~) 

and n(x) = const. Here typically B,,/BoZ = 0.0435. The 
current peakedness parameter E is varied from 0.05 to 0.85. 
The Alfven transit time across half a magnetic island is 
approximately z,? N 30~0, ‘. 

FIG. 7. Two-dimensional simulations of the collisionless tearing 
instability. Measured island width, IV, as a function of time in the nonlinear 
growth and saturation phase. 

tion value is, however, in close agreement with a shooting 
code solution of Eq. (4.1) which yields yL 21 1.3 x 10 p30,. 

The Rutherford nonlinear growth stage quickly follows 
the linear growth stage. According to Drake and Lee [ 181, 
the island width Win this stage grows as 

w=& ; 2Arvt, c > e (4.5) 

where G 2: 0.41 and v is the collision frequency. If we take 
d’ N a;‘, which is clearly a crude estimate of A’, and if 
we use the effective collision frequency due to finite size 
particles [Z], v N 1.4 x 10p3w,, we obtain W/a, -0.82 x 
10 ~ 3w, t for the parameters of the simulation. This theoreti- 
cal estimate is only in qualitative agreement with the 
simulation results of Fig. 7 because of the ambiguity in the 
definition of A’. 

IV.2. Coalescence Instability 

The second application is to the coalescence instability 
driven by the attractive force between current filaments. 
Pritchett and Wu [21] investigated the coalescence 
instability with an MHD code. This instability evolves on 
an essentially MHD time scale in the linear stage. 

Our implicit particle simulations are carried out with the 
following parameters: (system size) N, x N-V = 32 x 64, 
(number of electrons or ions) No = 18,432, (mass ratio) 
q/me = 16, (Debye length) A,, = lA, (electron cyclotron 
frequency) Q;2, = 1.50,, (temperature ratio) T,/Ti = 1, 
(speed of light) c/w,d = 10, (time step) At = 5~~~‘. The 
system is bounded in x and periodic in y. Also, the 
decentering parameters are chosen such that ye = 0.1 and 
yi = 0 so that the electrons are implicit but the ions are 
treated explicitly (Q, At < 1). 

Results of the simulations are displayed in Figs. 8 and 9. 
Figure 8a shows the time evolution of the amplitude of the 
magnetic field B, with E = 0.3 for two wavenumbers 
k, = 27c x l/N.V and k, = 27c x 2/N,. The fundamental mode 
is unstable as expected [21]. The measured growth rate 

0.05 (0) 

t 
‘; 

: 

0 
01 

Lz!!xl 

2 

0 500 1000 
w$ - 

FIG. 8. Two-dimensional simulations of the coalescence instability: 
(a) Time evolution of the amplitude of the magnetic field B, with E = 0.3 for 
two wave numbers k, = 2n x l/NY and k, = 271 x 2/N,. (b) Measured linear 
growth rate r/w, versus current peakedness E for the coalescence mode 
k,=2nxl/N,. 
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in this case is yr. - 6.2 x 10e3w,. The (approximately) 
corresponding case of Pritchett and Wu [21] is the one with 
their X, = 5 (from the aspect ratio) and small S. In their 
calculation, however, the toroidal field given by Eq. (4.6~) 
does not contain B,, . Their growth rate is yMMHD z 0.1452; ‘. 
With our estimate of T,, z 300; ‘, this gives bin,, - 4.8 x 
10~30,, in order of magnitude agreement with our 
simulation. 

Figure 8b shows the linear growth rate versus E (the 
current peakedness parameter) measured in our simula- 
tions. Also shown is the Pritchett and Wu [21] growth rate 
for x,. = 5 evaluated with our TV. Both agree in the 
qualitative dependence on E. Quantitative agreement can 
only be fair because of the different &‘s and plasma betas. 

Figure 9 displays the measured linear growth rate of the 
coalescence mode (k, = 2n x l/N,) as a function of B,;. It 
shows the interesting tendency of the linear growth rate to 
decrease with increasing Boz, the z component of the 
toroidal field. 

These results demonstrate good qualitative agreement 
and reasonable quantitative agreement between MHD 
theory and our implicit simulations of the coalescence 
instability. The two applications presented in this section 
demonstrate the efficacy of the direct implicit electro- 
magnetic algorithm described in Section II when applied to 
low frequency electromagnetic phenomena in strongly 
magnetized, inhomogeneous, and bounded plasmas. 

FIG. 9. Two-dimensional simulations of the coalescence instability. 
Measured linear growth rate of the coalescence mode k, = 2n x l/N, as a 
function of toroidal magnetic field strength B,, 

V. DISCUSSION 

We have presented a direct implicit electromagnetic 
algorithm for the particle simulation of low frequency 
phenomena in strongly magnetized plasmas. It is an 
involved extension of our direct implicit electrostatic 
algorithm [ 111. It shares with it some of the keys to its 
success, such as simplified differencing to properly account 
for finite particle size effects in the implicit field solve and 
straightforward time decentering of the Lorentz force to 
allow time steps such that 52, At + 1. 

Our algorithm is close in spirit to the direct implicit 
electromagnetic algorithm of Langdon [16] and Hewett 
and Langdon [12]. However, it appears to be applicable 
to weakly magnetized plasmas only since gyromotion is 
retained in the Lorentz force pushing the particles. Some 
other differences exist between our algorithm and that of 
Langdon [16] and Hewett and Langdon [12]. We intro- 
duce time filtering into Ampere’s law rather than Faraday’s 
law. Also, we correct the electric field instead of the current 
to ensure charge conservation. Finally, because of the 
strong coupling of the electric field components imposed by 
the implicit field solve, they advocate a simultaneous split- 
ting solution of the field equations using matrix techniques. 
We elect to build an approximate inverse of the operators 
relating the desired fields to their sources in the implicit field 
solver, separating the plasma response into parts parallel 
and perpendicular to the magnetic field and into parts 
longitudinal and transverse to the wavevector. The field 
components are then obtained by a rapidly convergent 
iterative technique in Fourier space. 

Our extensive code tests show that our direct implicit 
algorithm reproduces accurately the low frequency elec- 
trostatic and electromagnetic dispersion and fluctuation 
properties of a uniform plasma with time steps as large as 
w, At = 103. The algorithm is naturally able to follow time 
scales much longer than the electron plasma or cyclotron 
period and space scales much larger than the Debye length 
or collisionless skin depth. 

Our applications to the collisionless tearing instability 
and the coalescence instability demonstrate the efficacy of 
the algorithm in the following ways. The collisionless 
tearing instability has been evolved to saturation at a 
fraction of the cost of an explicit magneto-inductive code 
run with equivalent parameters. The coalescence instability 
runs show that the algorithm is able to tackle MHD time 
scales but with kinetic low frequency effects properly 
accounted for. 
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